Increased expression of mitochondrial-encoded genes in skeletal muscle of humans with diabetes mellitus.
نویسندگان
چکیده
Screening subtraction libraries from normal and type II diabetic human skeletal muscle, we identified four different mitochondrially encoded genes which were increased in expression in diabetes. The genes were cytochrome oxidase I, cytochrome oxidase III, NADH dehydrogenase IV, and 12s rRNA, all of which are located on the heavy strand of the mitochondrial genome. There was a 1.5- to 2.2-fold increase in the expression of these mRNA molecules relative to total RNA in both type I and type II diabetes as assessed by Northern blot analyses. Since there was approximately 50% decrease in mitochondrial DNA copy number as estimated by Southern blot analyses, mitochondrial gene expression increased approximately 2.5-fold when expressed relative to mitochondrial DNA copy number. For cytochrome oxidase I similar changes in mitochondrial gene expression were observed in muscle of nonobese diabetic and ob/ob mice, models of type I and type II diabetes, respectively. By contrast there was no change or a slight decrease in expression of cytochrome oxidase 7a, a nuclear-encoded subunit of cytochrome oxidase, and the expression of mitochondrial transcription factor 1 in human skeletal muscle did not change with type I or type II diabetes. The increased mitochondrial gene expression may contribute to the increase in mitochondrial respiration observed in uncontrolled diabetes.
منابع مشابه
Responses of Muscle Mitochondrial Function to Physical Activity: A Literature Review
Skeletal muscles play an active role in regulating the metabolic homeostasis through their ability for relating to adipose tissue and endocrine hormones. Contraction of the skeletal muscle leads to increased release of several myokines, such as irisin, which is able to interact with the adipose tissue. Physical activity promotes the irisin mechanism by augmenting the peroxisomes (PGC1-α) in the...
متن کاملThe effect of high-intensity interval training (HIIT) on gene expression of apoptotic markers in the skeletal muscle of diabetic rats
Background and Aims: Apoptosis plays important roles in the pathophysiology of Type 2 diabetes. The aim of this study was to evaluate the effect of high-intensity interval training (HIIT) on gene expression of apoptotic markers in the skeletal muscle of diabetic rats. Methods: To implementation of this experimental research, 60 male Wistar rats weighing 220 ± 20 gr randomly were divided into 5 ...
متن کاملImpaired expression of NADH dehydrogenase subunit 1 and PPARgamma coactivator-1 in skeletal muscle of ZDF rats: restoration by troglitazone.
Type 2 diabetes has been related to a decrease of mitochondrial DNA (mtDNA) content. In this study, we show increased expression of the peroxisome proliferator-activated receptor-alpha (PPARalpha) and its target genes involved in fatty acid metabolism in skeletal muscle of Zucker Diabetic Fatty (ZDF) (fa/fa) rats. In contrast, the mRNA levels of genes involved in glucose transport and utilizati...
متن کاملتاثیر یک دوره تمرین مقاومتی بر بیان اینترلوکین-6 و RCAN-1 در عضله اسکلتی موشهای صحرایی دیابتی شده با استروپتوزوسین
Background: Myokines released from skeletal muscle have multiple metabolic and hypertrophic effects. On the other hand, one of proposed pathways for effects of exercise training on metabolic diseases is calcineurin signaling pathway. With considering to relation between interleukin-6 (IL-6) and calcineurin, the purpose of this study was to investigate whether the resistance training has an effe...
متن کاملComparison of Mitochondrial-Related Transcriptional Levels of mitochondrial transcription factor A, Nuclear respiratory factor 1 and cytochrome c oxidase subunit 1 Genes in Single Human Oocytes at Various Stages of the Oocyte Maturation
Background: The aim of the current study was to assess the mRNA levels of two mitochondria-related genes, including nuclear-encoded NRF1 (nuclear respiratory factor 1), mitochondrial transcription factor A (TFAM), and mitochondrial-encoded cytochrome c oxidase subunit 1 (MT-CO1) genes in various stages of the human oocyte maturation. Methods: Oocytes were obtained from nine infertile women wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 95 3 شماره
صفحات -
تاریخ انتشار 1995